Synaptically released glutamate does not overwhelm transporters on hippocampal astrocytes during high-frequency stimulation.

نویسندگان

  • J S Diamond
  • C E Jahr
چکیده

In addition to maintaining the extracellular glutamate concentration at low ambient levels, high-affinity glutamate transporters play a direct role in synaptic transmission by speeding the clearance of glutamate from the synaptic cleft and limiting the extent to which transmitter spills over between synapses. Transporters are expressed in both neurons and glia, but glial transporters are likely to play the major role in removing synaptically released glutamate from the extracellular space. The role of transporters in synaptic transmission has been studied directly by measuring synaptically activated, transporter-mediated currents (STCs) in neurons and astrocytes. Here we record from astrocytes in the CA1 region of hippocampal slices and elicit STCs with high-frequency (100 Hz) stimulus trains of varying length to determine whether transporters are overwhelmed by stimuli that induce long-term potentiation. We show that, at near-physiological temperatures (34 degrees C), high-frequency stimulation (HFS) does not affect the rate at which transporters clear glutamate from the extrasynaptic space. Thus, although spillover between synapses during "normal" stimulation may compromise the absolute synapse specificity of fast excitatory synaptic transmission, spillover is not exacerbated during HFS. Transporter capacity is diminished somewhat at room temperature (24 degrees C), although transmitter released during brief, "theta burst" stimulation is still cleared as quickly as following a single stimulus, even when transport capacity is partially diminished by pharmacological means.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deriving the glutamate clearance time course from transporter currents in CA1 hippocampal astrocytes: transmitter uptake gets faster during development.

At many excitatory synapses, the neurotransmitter glutamate diffuses beyond the synaptic cleft to activate extrasynaptic targets. The extent and impact of such transmitter "spillover" on the processing capacity of neuronal networks are unclear, in part because it remains unknown how far transmitter diffuses from its point of release before being removed from the extracellular space by high-affi...

متن کامل

Glutamate Release Monitored with Astrocyte Transporter Currents during LTP

Long-term potentiation (LTP) of synaptic transmission in the CA1 region of the hippocampus is thought to result from either increased transmitter release, heightened postsynaptic sensitivity, or a combination of the two. We have measured evoked glutamate release from Schaffer collateral/commissural fiber terminals in CA1 by recording synaptically activated glutamate transporter currents in hipp...

متن کامل

Neuronal transporters regulate glutamate clearance, NMDA receptor activation, and synaptic plasticity in the hippocampus.

In the mammalian brain, the specificity of excitatory synaptic transmission depends on rapid diffusion of glutamate away from active synapses and the powerful uptake capacity of glutamate transporters in astrocytes. The extent to which neuronal glutamate transporters influence the lifetime of glutamate in the extracellular space remains unclear. Here we show that EAAC1, the predominant neuronal...

متن کامل

Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices.

Recent results have demonstrated the existence of bidirectional communication between glial cells and neurons. We investigated in brain slices whether rat hippocampal astrocytes respond to acetylcholine synaptically released by an extrinsic pathway. We stimulated the stratum oriens/alveus, which contains cholinergic afferents from the septum and diagonal band of Broca, and recorded whole-cell m...

متن کامل

Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes

BACKGROUND Removing and sequestering synaptically released glutamate from the extracellular space is carried out by specific plasma membrane transporters that are primarily located in astrocytes. Glial glutamate transporter function can be monitored by recording the currents that are produced by co-transportation of Na+ ions with the uptake of glutamate. The goal of this study was to characteri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 83 5  شماره 

صفحات  -

تاریخ انتشار 2000